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Abstract: Neonatal skin hydration decreases rapidly postnatally and
then increases, indicating adaptive changes in stratum corneum water
handling properties. Transition from high to low humidity at birth may initiate
filaggrin proteolysis to free amino acids. Neonatal skin with vernix caseosa
retained is more hydrated than skin with vernix removed. This study exam-
ines the potential roles of free amino acids and vernix in postnatal adaptation
of infant stratum corneum in vivo. Specifically, the ontogeny of free amino
acid generation in neonatal stratum corneum and the role of vernix caseosa
in postnatal adaptation were examined using high performance liquid
chromatography. Free amino acids were quantified for infant skin samples
collected at (i) birth and 1 month and (ii) birth and 24 hours after vernix
caseosa retention or removal and compared to neonatal foreskin, vernix
caseosa, and adult stratum corneum using t-tests, analysis of variance, or
univariate procedures. Free amino acids were extremely low at birth, sig-
nificantly higher 1 month later but lower than in adults. Vernix caseosa
retention led to significantly higher free amino acids 24 hours after birth
compared to infants with vernix caseosa removed, and it paralleled the
higher stratum corneum hydration of vernix caseosa-retained skin. Vernix
caseosa contained free amino acids, with glutamic acid and histidine levels
higher than in infants. Free amino acids in vernix caseosa-retained skin
appear to originate from vernix caseosa. Free amino acids were lower in
neonatal foreskin than adult forearm stratum corneum. Arginine was higher
than citrulline at birth, but levels were comparable in older infants. The free
amino acid increase at 1 month may be initiated by the humidity transition at
birth and supports results in animals. The findings have implications for
infant skin care practices.
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Birth marks a major, rapid transition from the high
humidity aqueous intrauterine environment to the
characteristically low humidity (typically approximately
20–40%) in nurseries and homes. Following birth, full-
term neonates have a competent stratum corneum (SC)
barrier as indicated by low transepidermal water loss
(TEWL) (1). However, skin hydration decreases mark-
edly during the first postnatal day and increases pro-
gressively over the next 2 weeks (2). By 1 month, rates
of moisture accumulation (i.e., transepidermal water
that accumulates within the upper SC under occlusion)
are significantly higher than maternal volar forearm
sites. Water holding capacity also increases. Barrier
integrity (i.e., TEWL) remains low throughout the
period. Newborn skin is significantly drier than the skin
of older infants (1, 2, and 6 months) and their mothers
(3). Functional tests of water binding show significant
differences between age groups. Neonatal SC hydration
decreases significantly after transitioning from a
10-minute water soak (bath, high humidity) followed by
towel drying to a much drier environment following a
15-minute equilibration at approximately 30–45% rel-
ative humidity (4). Adult volar forearm skin soaked in
water for 10 minutes has significantly reduced levels of
water-soluble amino acids and as well as decreased skin
hydration and increased surface pH (5,6). Proper
hydration of the SC is essential for effective skin func-
tion, for example, to allow sufficient plasticization and
flexibility during movement, to prevent fissuring, and
for proper desquamation of the outermost SC layer
(7,8). Emergence of a fully functional SC barrier
following transition from aqueous uterine surroundings
to a dry environment depends upon molecular mecha-
nisms of endogenous water binding within the SC.
The SC water-handling properties must be sufficiently
robust to respond to local forces (e.g., friction, heat,
humidity, bathing, clothing, secretions, etc.) throughout
life (4).

Filaggrin is derived fromprofilaggrin in the epidermal
keratohyalin granules and aggregates the SC keratin fil-
aments. It later undergoes proteolysis to form the free
amino acid component of natural moisturizing factor
(NMF) (9), which is responsible for hydration, water-
handling properties, and plasticity of the SC (10–12).
Hairless mice kept at 80%RH, then transferred to 10%
RH, exhibit decreases in skin hydration, water-holding
capacity, and free amino acid concentration and reduced
filaggrin levels (13). High humidity (100%) blocks acti-
vation of filaggrin proteolysis in newborn rats after birth
(14). Furthermore, the products of filaggrin proteolysis
may function to acidify the SC.

Water-soluble free amino acids (FAA) constitute
40% of NMF (14,15). Filaggrin deimination and

subsequent proteolysis is the major source of free
amino acids in the SC (16–18). Histidase converts
histidine to urocanic acid (19). A significant fraction of
the arginine is converted to citrulline (20,21). The
presence of high amounts of urocanic acid and citrul-
line indicate NMF production from filaggrin (19).
Glutamic acid is converted to pyrrolidone carboxylic
acid (PCA) (22,23), accounting for 12% of the total
NMF (15). Lactate, urea, sugars, and ions are also part
of NMF.

Vernix caseosa (VC) is a multicomponent mixture of
protein (10%), lipids (10%), and 80% water, which is
associated with fetal corneocytes embedded in a hydro-
phobic lipid matrix (24). Vernix covers the fetus during
the last trimester (25) and presumptively protects the
epidermis from water exposure while facilitating epider-
mal cornification and SC formation (26). Retention of
VC immediately following birth leads to significantly
higher skin hydration at 24 hours of life compared to
infants with VC removed (25). This result is consistent
with our previous report that normal adult skin treated
with VC has an increased SC water-binding capacity
relative to untreated control (27).

Multiple processes may impact neonatal skin hydra-
tion including: (i) extraction of water-binding FAA from
the SCby amniotic fluid results in decreased hydration at
birth and (ii) abrupt transition fromhigh-to-low ambient
humidity at birth initiates filaggrin proteolysis to the free
amino acid components of NMF, which subsequently
increase SC hydration. The aim of the present study was
to examine the potential roles of free amino acids and
vernix caseosa in postnatal adaptation of infant SC in
vivo. We hypothesized that FAA would increase post-
natally and would be higher in vernix-retained versus
vernix-removed skin at birth.We examined the potential
roles of FAA and VC in postnatal adaptation by quan-
tifying the FAA component of NMF in (i) full-term
infant SC at birth and at 1 month of age, (ii) neonatal
SC with vernix retained or removed after birth and
24 hours later, and (iii) native VC at varying environ-
mental humidities. The effect of humidity on native VC
was examined to determine whether FAA could be
generated (e.g., from filaggrin proteolysis triggered by
decreasing humidity at birth). Neonatal foreskin was
used as an in vitro control for newborn skin because
FAA levels could be determined as a function of SC
depth. Adult forearm SC served as another control since
it has been a common reference for infant developmental
studies and for evaluating skin care products (2,3,28,29).
The findings are consistent with reports on the influence
of humidity onfilaggrin proteolysis andNMF formation
in animals and have clinical implications for premature
infant SC maturation.
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METHODS

Subjects

In study 1, healthy full-term neonates (n = 17) were
enrolled shortly after birth at a level II nursery (The
Christ Hospital, Cincinnati, OH). Infants in distress,
with major congenital abnormalities, or <38 weeks
gestational age (GA) were excluded. Skin surface sam-
ples were collected immediately after birth and 24 hours
later using D-squame� tapes (CuDerm Corporation,
Dallas, TX). In study 2, healthy full-term neonates
(n = 13) were enrolled shortly after birth. Infants were
evaluated over 1 month to determine changes in skin
barrier integrity and water-handling properties using
methods described previously (2,30). Skin surface sam-
ples were collected from chest and back at birth and
1 month. Samples from both studies were retained and
stored at )80�C until analysis. The Institutional Review
Boards (Cincinnati Children’s Hospital Medical Center,
The Christ Hospital) approved the research protocols,
and parents provided written informed consent.

Vernix Caseosa and Neonatal Foreskins

Vernix caseosa was harvested immediately after delivery
by gentle removal from the skin surface of 10 healthy
newborns at local hospitals (The Christ Hospital, Uni-
versity Hospital Cincinnati, OH) and stored in sealed,
sterile tubes at 4�C until analysis. Neonatal foreskins
were collected fromhealthy infants (TheChristHospital)
within 24–36 hours of birth and stored in sterile media
prior to sampling and analysis. The Institutional Review
Board (IRB) approved the protocol.

Adult Subjects

A cohort of healthy adult subjects (n = 11) served as
study controls, and FAA from volar forearm SC were
determined as previously reported (6).

Extraction of Free Amino Acids from Vernix Caseosa

Vernix samples from 10 infants were pooled to create a
representative sample (20 g) for analysis. Aliquots of
250 mg were processed in one of three different solvent
systems, water, urea ⁄ sodium dodecyl sulfate (SDS), and
chloroform ⁄methanol (Folch extraction) as follows:
(i) Vernix was homogenized in 20 volumes of deionized
water for 1 minute using a Tissue Tearor (Model 985-
370;BiospecProducts, Inc., Bartlesville,OK)andfiltered
through a 70 micron nylon screen, (ii) Vernix was
homogenized in 20 volumes of 300 mm urea (Ameresco,
Solon, OH) with 2% SDS (Sigma Chemical Company,

St. Louis,MO) for 1 minute and filtered through a nylon
mesh filter, and (iii) Vernix was homogenized in 20 vol-
umes of chloroform:methanol (2:1) for 5 minutes (31).
Twelve volumes of deionized water were added, and
the mixture was rehomogenized for 1 minute, quickly
filtered, and allowed to stand until the two phases had
separated. The water phase was collected and used for
amino acid analysis. Acid extraction was not considered
as an option due to potential confounding effects from
acid hydrolysis of peptides in vernix. Replicates were
analyzed for water-soluble amino acids. The amino acid
profiles from the deionized water and the urea ⁄SDS
methods were similar to the major amino acids in filag-
grin (Table 1), and the yields were higher than for the
Folch method. The urea ⁄SDS method was chosen
because it yielded better High Performance Liquid
Chromatography (HPLC) peak resolution.

The effect of humidity on the FAA profile was
determined by exposing vernix to controlled conditions
of 24%, 39%, 50%, 77%, 98%, and 100% RH for
48 hours (32). Vernix (250 mg, three replicates) was
spread onto double layers of N-terface� (Winfield
Laboratories, Inc., Richardson, TX), a permeable film
substrate to simulate application to the skin surface.
A second set (250 mg, three replicates) was main-
tained at each condition in bulk (no spreading).
Samples were extracted in urea ⁄SDS and analyzed as
described above.

Filaggrin Determination

A pooled vernix sample was analyzed for filaggrin.
Separate aliquots were extracted in urea ⁄SDS, phos-
phate buffer solution (PBS), and 8 m urea in Tris HCL.
Western blot analysis confirmed the presence of filaggrin
(data not shown).

D-Squame SC Collection

Surface samples from infant skin and neonatal foreskins
were collected using 22 mm diameter D-Squame�

TABLE 1. Mean Amino Acid Concentrations (pmoles ⁄lg
protein) ± Standard Error of the Mean for the Water,
Urea ⁄SDS, and Folch Extraction Systems

Amino acid
Water
(n = 5)

Urea ⁄ SDS
(n = 5)

Folch
(n = 5)

Glycine (gly) 10.1 ± 0.4 51.1 ± 7.8 9.2 ± 0.5
Serine (ser) 53.1 ± 3.4 98.3 ± 5.4 30.5 ± 1.9
Glutamic acid (glu) 119.5 ± 7.6 239.5 ± 19.6 99.9 ± 4.8
Histidine (his) 383.4 ± 23.1 438.5 ± 96.7 86.5 ± 11.6
Arginine (arg) 69.4 ± 4.0 141.6 ± 11.0 60.4 ± 8.4
Citrulline (cit) 62.6 ± 4.1 121.5 ± 9.0 56.5 ± 3.6
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(CuDerm Corporation) tapes. Infant samples were
taken from the chest and back, close to the midline
in studies 1 (three serial) and 2 (two serial). Tapes
were applied with consistent pressure, removed after
30 seconds, and stored at )80�C until analysis. The
first tape was discarded from the foreskins to remove
residual blood then 10 (10) serial tapes were obtained
for analysis. Ten serial tapes were also collected from a
volar forearm site of healthy adults (n = 11) as previ-
ously reported (6).

Rationale and Analysis of Water-Soluble Amino Acids

Free amino acids constitute about 40% of the natural
moisturizing factor (NMF) (14,15). Deimination of
filaggrin and subsequent proteolysis is the major source
of free amino acids in the SC (16–18). Histidine
undergoes conversion to urocanic acid via histidase
(19). A significant fraction of the arginine is converted
to citrulline (20,21). Therefore, the presence of high
amounts of urocanic acid and citrulline indicate NMF
production from filaggrin (19). Glutamic acid is con-
verted to pyrrolidone carboxylic acid (PCA) (22,23),
about 12% of the total NMF (15). Lactate, urea, sug-
ars, and ions are part of NMF. Based on the available
analytical and detection methods, we evaluated the
FAA component.

The tapes were extracted with 300 lL 6 mm hydro-
chloric acid and 10 lLof 2 lmol ⁄mL a-amino-n-butyric
acid (Sigma Chemical Co.) at room temperature for
3 hours (6). Free amino acids were quantified using
reverse-phase HPLC and fluorescence detection (Waters
Corporation, Milford, MA). The tapes were then
extracted with 300 mm urea (Ameresco) with 2% SDS
(Sigma Chemical Company) and analyzed for total sol-
ubleproteinwith thePierceBCAprotein assaykit (Pierce
Biotechnology Inc,Rockford, IL) assay (33). Free amino
acids were normalized to the total protein and reported
as picomoles per microgram.

Skin Hydration

Skin hydration was measured as previously described
(25,34) using a NOVA meter (NOVA Technology Cor-
poration, Gloucester,MA). Stratum corneum hydration
was taken as the first reading, and the moisture accu-
mulation was determined over 20 seconds.

Statistical Analysis

The results are expressed as mean ± standard error of
the mean (SE), and p £ 0.05 was considered statistically
significant. The ontogeny of infant FAAwas determined

using paired t-tests. Group comparisons (e.g., infant
birth, infant 1 month, adult) and effect of SC depth
(adult forearm, foreskins)were evaluatedwith univariate
general linear models (GLM) and analysis of variance
(ANOVA) (SigmaStat, SPSS, Inc., Chicago, IL). Log10
transformationwas used to improve the normality of the
foreskin and adult data.

RESULTS

Subjects

In study 1, SC samples were obtained from 12 sites (nine
infants) from the vernix-retained group and nine sites
(eight infants) from the vernix-removed group. Chest
andbackSCwere collected at birth and1 month for four
infants in study 2. All data were used (2,25). The mean
GA was 38.9 ± 0.9 for VC retained and 39.6 ± 1.3 for
VC removed (p < 0.05). The mean vernix coverage (25)
was 76.5% for VC retained and 9% for VC removed.
The moisture accumulation rate was significantly higher
for VC retained after birth (1.1 ± 0.6, p < 0.05) and
directionally higher (0.10 ± 0.05, p = 0.08) 24 hours
later compared to VC removed (0.24 ± 0.12 and
0.0 ± 0.06, respectively). These results were consistent
for a larger group reported previously (25).

FAA in Vernix

Relative to theaminoacidprofile forfilaggrin (35), native
vernix had higher levels of glutamic acid and histidine
and lower levelsof glycineandserine (p < 0.05,Table 2).
No significant differences occurred in FAA levels as a
function of relative humidity (Table 3).

Effect of Vernix Retention on FAA

Vernix retention led to higher levels of FAA, 24 hours
after birth (p < 0.05) (Fig. 1A). Gestational age was
includedas a covariate in the analysis to correct for group
differences in age. The three most abundant FAA,
glycine, serine, glutaminc acid (p < 0.005), as well as
arginine (p = 0.05) and citrulline (p = 0.03), were
significantly higher for VC-retained samples, and histi-
dine was directionally higher (p = 0.06). Free amino
acids at 24 hours paralleled the higher SC hydration.
Native vernix had considerably higher glutamic acid,
histidine, and citrulline levels but lower amounts of serine
than VC-treated skin (p < 0.05) (Fig. 1B). Glycine and
arginine levels were comparable. The total soluble pro-
tein was higher in SC when vernix was retained
(55.8 ± 5.8 lg ⁄mL) than when it was removed
(16.8 ± 5.6 lg ⁄mL, p < 0.001).
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Ontogeny of FAA in Infants

Free amino acid levels were very low at birth and in-
creased significantly over the firstmonth for the total and
individual FAA with the exception of glutamic acid
(p < 0.05, Fig. 2A, B). The increases paralleled the rise
in SC hydration (2). Free amino acid levels were sub-
stantially lower in infants at 1 month of age than in
adults for the total and individual amino acids
(p < 0.05) (Fig. 2A, B). Glycine and serine values were
higher, and the glutamic acid level was lower in 1-month
SC than in vernix (p < 0.05, Figs. 1B and 2B). At
1 month, citrullinewas higher versusVC-retained skin at
birth and lower than native vernix.

FAA in Neonatal Foreskin

The use of neonatal foreskins (n = 3) permitted FAA
determination at greater SC sampling depths than was
possible from newborn infant skin in vivo. Total FAA,
glutamic acid, histidine, arginine, and citrulline levels
were significantly lower in the first collected foreskin tape

versus adult forearm (p < 0.05). Free amino acids were
summed for tapes 1, 3, 5, and 10 and normalized to the
total cumulative protein. Free amino acid, histidine, and

TABLE 3. Effect ofRelativeHumidity onTotal FAA,Arginine,
and Citrulline in Vernix Caseosa Reported as Mean ± SE

Relative
Humidity (%)

Total FAA
(pmoles ⁄ lg
protein)

Arginine
(pmoles ⁄ lg
protein)

Citrulline
(pmoles ⁄ lg
protein)

Spread vernix
24 1330.5 ± 104.5 198.7 ± 62.6 49.6 ± 18.0
39 1360.2 ± 106.9 128.6 ± 49.0 31.5 ± 6.9
50 1048.5 ± 69.5 57.0 ± 7.0 25.6 ± 3.8
77 1456.9 ± 43.2 72.1 ± 29.7 33.6 ± 13.1
98 865.3 ± 22.7 35.2 ± 5.2 14.2 ± 3.8
100 888.7 ± 116.9 31.1 ± 8.5 14.2 ± 3.7

Unspread vernix
24 1324.5 ± 114.8 94.0 ± 13.6 16.4 ± 3.8
39 1489.9 ± 46.5 27.2 ± 1.7 9.1 ± 0.5
50 1243.2 ± 78.2 23.8 ± 3.7 9.2 ± 1.1
77 1361.1 ± 105.4 28.8 ± 5.1 9.8 ± 1.4
98 883.2 ± 121.0 26.6 ± 2.0 12.5 ± 2.2
100 1029.1 ± 41.3 28.9 ± 6.0 14.3 ± 3.3

TABLE 2. Amino Acid Compositions of Native Vernix and Adult Forearm Skin Relative to Fully Hydrolyzed Filaggrin (31)

Bulk vernix
(pmoles ⁄ lg
soluble protein)

Indexed
to glycine

Adult SC
(pmoles ⁄ lg
soluble protein)

Indexed
to glycine

Filaggrin
(31) (pmoles ⁄ lg
filaggrin)

Indexed
to glycine

Glycine 78.5 ± 19 1.0 483.3 ± 134 1.0 2981 1.0
Serine 114.6 ± 13 1.4 870.6 ± 248 1.8 2640 0.9
Glutamic acid 284.6 ± 27 3.6 312.6 ± 101 0.6 1100 0.4
Histidine 459.4 ± 92 5.8 242.4 ± 37 0.5 900 0.3
Arginine 151.4 ± 12 1.9 493.0 ± 105 1.0 500 0.2
Citrulline 134.6 ± 13 1.7 289.7 ± 49 0.6 70 0.02

The values are from the HPLC analysis as pmoles amino acid per microgram soluble protein (extracted from tapes) for native vernix and adult
skin. For comparison, the relative amino acids in filaggrin are given as pmoles per microgram of protein based on the composition from full
acid hydrolysis (31). The FAA for vernix, adult skin and filaggrin are also shown as indices, i.e., normalized to glycine.

A

B

Figure 1. Effect of vernix retention on FAA levels in infant
stratum corneum. (A) Vernix retention led to significantly
higher quantities of FAA 24 hours after birth (p < 0.05). The
most abundant amino acids glycine (p < 0.005), serine
(p < 0.010), glutaminc acid (p < 0.005), as well as arginine
(p < 0.05) and citrulline (p < 0.05), were higher in the vernix
retained group (p < 0.05). Histidine was directionally higher in
the vernix-treated group (p = 0.06). *Indicates significant
difference between VC-retained and VC-removed (p < 0.05).
#Indicates directional difference (p = 0.06). (B) The relative
amino acid concentrations in vernix treated skin differed from
vernix caseosa (normalized to protein). Vernix had consid-
erably higher levels of glutamic acid, histidine, and citrulline,
and lower serine than the sample from vernix-retained skin
(p < 0.05). Glycine and arginine amounts were comparable.
*Indicates significantly higher than VC-retained skin (p <
0.05). #Indicates significantly lower than VC-retained skin.
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citrulline levels were lower in foreskin (p < 0.05), and
the glutamic acid levelwas directionally lower (p =0.06).
A confounding factor was that the amount of protein
from foreskin (102.9 ± 12.5 lg ⁄mL) was higher than
that from forearm (36.9 ± 3.4 lg ⁄mL) (p < 0.05) indi-
cating that different SC depths were being compared. To
account for this discrepancy, comparisons were made at
‘‘comparable’’ cumulative protein levels (i.e., foreskin
tape 1 compared with cumulative forearm tapes 1, 3, and
5).Argininewashigherandcitrullinewas lower in foreskin
at each SC level (p < 0.05, Fig. 3A, B). These two amino
acids were not different throughout adult SC, except in
tape1whereargininewasdirectionallyhigher (p = 0.09).
Arginine was higher than citrulline in VC (p < 0.005),
VC-retained, andVC-removed skin (p <0.05) (Fig. 1B).
At 1 month, infant arginine and citrulline levels were
comparable, as they were in adult skin (Fig. 2B).

DISCUSSION

The primary aim of this study was to examine the po-
tential roles of free amino acids and vernix caseosa in
postnatal adaptation of infant SC in vivo. The results
suggest that vernix provides water-binding moieties
(FAA) that can facilitate the sudden adaptation from
amniotic fluid immersion in utero to the dry ambient
conditions following birth. In general, in the absence of
vernix, the FAA levels were extremely low at birth,
increased over the first month but remained markedly
lower than typical adult levels (Fig. 2A,B). The relative
amounts of histidine and glutamic acid in vernix were
higher than expected from filaggrin proteolysis alone,
indicating that vernix may contain other sources of
soluble amino acids. Histidine and glutamic acid were

A

B

Figure 2. Ontogeny of free amino acids in infant stratum
corneum. (A) Free amino acid levels were very low at birth
and increased significantly over the first month for the total
and (B) individual FAA except glutamic acid (p < 0.05, paired
t-test). (A,B) Free amino acids were substantially lower in
infants at 1 month of age than in adults for total and individual
amino acids (p < 0.05). * Indicates significant difference for
birth versus 1 month (p < 0.05). #Indicates significant differ-
ence versus infants at birth (vernix removed) and 1 month of
age (p < 0.05).

A

B

Figure 3. Free amino acid in neonatal foreskin compared to
adult volar forearm. (A) Comparison of protein levels dem-
onstrated that different depths within the SC were being as-
sessed in neonatal foreskins versus adult volar forearm
samples. Values are shown as log10 of the cumulative FAA
versus the cumulative protein (tapes 1, 3, 5, and 10). (B)
Arginine and citrulline were compared for cumulative
amounts versus the cumulative protein. Arginine was signifi-
cantly higher than citrulline for foreskin throughout the upper
SC (paired t-test, p < 0.05).
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significantly higher in vernix than in vernix-retained in-
fant SC. Both amino acid products of filaggrin proteol-
ysis undergo further change. Histidine is converted to
urocanic acid by the enzyme histidase (36), although its
presence in vernix has not been reported. The enzyme is
up-regulated during keratinocyte differentiation (37) and
has optimum activity at neutral pH (38). Histidase
activity (i.e., conversion of histidine to urocanic acid) is
not responsible for the postnatal pH decrease in animals
(39). Consequently, it is unlikely that the pH decrease we
observed for vernix-retained neonatal SC is due to con-
version of histidine from vernix (25). Glutamic acid is
converted to pyrrolidone carboxylic acid (PCA) via
enzymatic (epidermal) and nonenzymatic processes, and
levels decrease as PCA increases in normal skin (22,23).
Therefore, theFAA inVC-retained skin are attributed to
the vernix rather than to proteolysis of filaggrin to form
FAA in the upper stratum corneum secondary to a
reduction in ambient humidity (Fig. 1A,B) (14). How-
ever, it is possible that the higher FAA levels of glutamic
acid and histidine in vernix are due to incomplete con-
version to PCA and UCA.

Despite prolonged fluid immersion prenatally, low
skinhydration isaconsistentfinding infull-termneonates
within the first day after birth (2,25,40). Low hydration
mayresultfromseveralinteractingfactorsincludingalack
ofwaterbindingFAAin theupperSC,via extraction into
the amniotic fluid in utero (soaking effect) (4,6), or to de-
layedorimpairedfilaggrinproteolysisathighhumidity,or
both (14). In hairless mice, abrupt decreases in environ-
mentalhumidityevokeincreasedDNAsynthesis,reduced
total free amino acid generation, and decreased filaggrin
immunoreactivity due to decreased epidermal keratohy-
alin granules induced by high humidity and dry skin
(13,14,40,41). Low hydration may indicate an underde-
veloped SC due to lack of transglutaminase activity (42).
However, this explanation is less likelygiven thegenerally
excellent barrier integrity, indicated by the low TEWL
values observed in full-term newborn skin (43).

Low FAA in infant SC at birth is consistent with re-
ports in neonatal and adult rat skin (14). Profilaggrin
appears at gestational day 19 in rat skin, and filaggrin is
found at day 20, concurrent with SC development (14).
At birth (day 21), filaggrin is present throughout the SC,
markedly decreased on postnatal day 1, and even lower
on day 2. High (100%) or low humidity (30–70%) pre-
vents filaggrin proteolysis, which occurs optimally at 80–
95% RH. The finding of reduced FAA in neonates at
birth and 1 month extends the finding of lower NMF in
3- to 12-month infants versus adults with Raman con-
focal microspectroscopy (3). The finding of higher FAA
inVC-retained skinmay explain the increased SC acidity
(lower pH) when vernix is retained at birth versus higher

acidity when it is removed (25). We reported continuing
acidification of the SC over weeks following birth in
hospitalized premature and full-term infants (44). The
higher FAA at 1 month in the present study is consistent
with increasing acidification. An alternative explanation
for the lowFAA levels is that they are extracted from the
SC into the amniotic fluid. Water exposure leads to sig-
nificantly lower FAA in adults (6,45). The relatively
higher levels of arginine and citrulline in vernix and adult
skin may reflect (i) deimination of arginine to citrulline
followed by proteolysis to FAA and (ii) conversion of
histidine to urocanic acid (19,46,47). Additional
perspective regarding the low FAA could be obtained
by evaluating a highly occlusive treatment (e.g.,
Aquaphor�, Beiersdorf AG. Hamburg, Germany, or
similar anhydrous petrolatum-based cream) on newborn
skin immediately after birth. An occlusive treatment
would serve as a control for the vernix-removed skin.
Exposure to 100% humidity blocked filaggrin proteoly-
sis in neonatal animals (14). Treatment of both normal
and compromised (tape-stripped) skin with complete
occlusion for 5 days led to significantly lowerFAA levels
in adults (48,49). Therefore, the levels of FAA in oc-
cluded newborn skin would likely be lower than in ver-
nix-retained skin. Use of the newer noninvasivemethods
(i.e., Raman spectroscopy) would permit analysis of
NMF at deeper levels in occluded infant skin.

To further explore the cause of low FAA in newborn
infants, wemeasured the FAA as a function of SC depth
in foreskins, compared to 10 serial samples from adult
forearm skin. Similar to neonatal chest and back skin,
FAA were significantly lower in foreskin than in adult
SC. Arginine residues in filaggrin must be deiminated to
citrulline to allow separation from the intracorneocyte
matrix and facilitate proteolysis to FAA (46,50). The
arginine ⁄citrulline ratio is relatively high in filaggrin (i.e.,
8:1) (35). Interestingly, despite the SC depth, foreskin
citrulline levels were not only diminished relative to
adults, but the ratio of arginine to citrulline was consis-
tently higher in foreskin (Fig. 3B). A similar high argi-
nine to citrulline ratio was observed in newborn skin
following retention of vernix following birth (Fig. 1A).
Filaggrin was found in vernix by Western blot analysis,
consistent with the proteonomic analysis by Tollin et al
(51). Vernix contains caspase 14 (51), an enzyme that
converts deiminated filaggrin to peptide intermediates
(52), which are hydrolyzed to generate FAA including
citrulline (50).

For adult SC, infants at 1 month and vernix, the cit-
rulline levels were higher, relative to arginine (molar
basis), than in infant SC at birth, neonatal foreskin, and
in filaggrin itself. This finding suggests that the arginine is
converted to citrulline after the proteolysis of filaggrin
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has occurred. Another potential source of citrulline from
arginine is through the activity of nitric oxide synthase,
an enzyme that generates citrulline and NO from argi-
nine residues (53). Both arginine and NO facilitate vari-
ous aspects of wound healing (54). While it has not yet
been established, the possibility exists that nitric oxide
synthase could be present in vernix and that it could
generate citrulline from arginine along with volatile NO.
In such a physiological scenario, vernix retained on the
skin surface would function as a source of available
arginine.

One limitation of this study is that we examined only
FAA, which constitute 40% of the NMF composition
(15). The other components such as PCA, urocanic acid,
lactate, urea, sugars, and ions were not measured. Lac-
tate is positively correlated to SC hydration (12). We
have assumed filaggrin to be the source of citrulline;
however, keratin 1 is another potential source. Keratin 1
is expected to be at higher levels in dry skin (42), and it
may have been a source of citrulline in dry infant SC.
Another potential source of reduced FAA is the degra-
dation of histidine by skin microflora (bacteria) (55).We
did not evaluate the skin sites for microflora and cannot
address the impact of skinbacterial colonizationonFAA
levels. All tape specimens were immediately stored at
)80�C to preventmicrobial degradation between sample
collection and analysis. Glycerol is another low molec-
ular weight hygroscopic moiety that is expected to be
present in vernix and stratum corneum. Glycerol is
produced from lipase degradation of triglycerides in
sebum and from circulation by way of aquaporin 3
channels (56). Vernix contains lipids, including fatty
acids, and triglycerides (57). Although specific lipases
have not been reported, generation of glycerol from
vernix triglycerides is likely to occur. Glycerol in vernix
and the epidermis would contribute to SC hydration.

Another limitation was the variation in skin sites
where SC was collected from the chest and back in in-
fants and from the volar forearm in adults. Regional
differences in FAA are expected, given the differences in
hydration and SC integrity. Variations in specific FAA
were found for the cheek versus the back, cheek versus
forearm, and calf versus forearm (10,58,59). We exam-
ined the regional differences in FAA among adults using
the present analytical method and found levels to be
higher for the calf versus forearm and lower for the jaw
versus the chest and back (60). The forearm, chest, and
back sites were not markedly different. The use of neo-
natal foreskinas ameansof investigating the effects ofSC
depth on FAA levels is suboptimal. However, we could
not obtain biopsies or surgical specimens from normal
newborn skin. Noninvasive methods such as in vivo
Raman spectroscopy for assessing NMF components as

a function of depth were not available. The sites for
sampling and the use of foreskinwere chosen proactively
while recognizing the limitations.

During the last trimester, vernix begins to coat the
skin from head to toe and back to front, presumably
under hormonal control with lipids generated by the
sebaceous gland and cells from the hair follicle (61). It is
‘‘extruded’’ onto the interfollicular epidermis to cover the
whole surface (62). In this working hypothesis, cortico-
tropic-releasing factors (CRF) from either the placenta
or hypothalamus initiate adrenocorticotropic hormone
(ACTH) release from the pituitary gland. Adrenocorti-
cotropic hormone adrenal gland stimulation promotes
synthesis and release of androgenic steroids (e.g., dihy-
droepiandrosterone), which are converted to active
androgens within the sebaceous gland. Production of
superficial lipid film (sebum) in the immediate vicinity of
the hair follicle modulates the transepidermal water
gradient and protects the epidermis from exposure to
water, thereby facilitating cornification of the underlying
epidermis (63).

Multiple biological functions havebeendemonstrated
or proposed for vernix (61). It contains lysozyme, lac-
toferrin and other microbials with demonstrated antiin-
fective properties (64–67). Films of vernix in vitro impede
penetration of the exogenous enzyme chymotrypsin
(found in meconium, similar to proteolytic fecal
enzymes) and do not impede native enzyme activity nec-
essary for epidermal development (68). In animals with
barrier compromise (via tape stripping), vernix enhances
SC formation without increasing epidermal thickness
(69). Vernix functions as a skin cleanser, although it is
often viewed as a soil itself (70). In vitro measurements
indicate a low surface energy for vernix suggesting that it
creates a protective hydrophobic layer around the fetus
(26). Vernix has the cytokines IL1a, IL1b, TNFa, IL-6,
IL-8, and MCP1 (29). Vernix contains cholesterol,
ceramides, and a number of fatty acids (including oleic,
linoleic, and long chain species) (57,67). Fatty acids,
particularly linoleic, activate peroxisome proliferator-
activated receptor-a (PPARa),which increases the rateof
barrier formation (71). Linoleic acid has antiinflamma-
tory properties (72). These functions, coupled with the
antiinfective properties, are essential for a premature
infant whomay not have exposure to vernix in utero.

In conclusion, the present study is the first to address
the ontogeny of free amino acids, putatively natural
moisturizing factor, in the human neonate beginning at
birth. The results are consistent with previous reports in
fetal and neonatal animals compared to adults (13,14).
The role of VC in neonatal adaptation is important since
vernix is a uniquely humanmaterial with no counterpart
in neonatal mice or rats. The findings suggest
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another adaptive function of vernix, namely to provide
water-binding FAA to plasticize the skin before the
longer term adaptive epidermal changes and subsequent
increased SC hydration have occurred (2). They also
raise questions for future research (e.g., the origin of
vernix free amino acids). The effect of GA on the
ontogeny of FAA generation is of interest, given the
dryness, scaling, and low hydration commonly observed
in premature infants as the SC barrier develops
(30,73,74). The findings have implications for infant skin
care practices and provide additional support for the
retention of vernix on the skin after birth. Studies on the
application of water-binding vernix-like creams to neo-
natal skin after birth are warranted.
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